
Form Approved
REPORT DOCUMENTATION PAGE OMBNO. 0704-0188

Public raloorling butQe_ for this col_tlo,=l of i_formatlofl i$ estrnate<l to average I hour pet resl:,onse includ_g _e trne fo_"tllvi4win_ instructions, cearct_ing ematin,g dala sources
gatnenng and ,"na_tainm_ the data nee<led, and complet.',g and reviewing the collection of information. Send comment regarding this bun:len estlrnato$ or any othot asl::_cl of this
cottect_0n of _formatlon. _ncluding suggestions for teOuon(_ this burden, to Wa_ington HeadQua_ats Services, Directorate for .nformat_on O¢>erations and Reports. t 215 Jefferson
Oaws Hbghway. Suite 1204. Arlington. VA 22202-4302, |ndto the Office of M,k'aagement and Budget. Paperwork Reduclion Project {0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

9/97

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Measurement and Analysis of Failures in Computer Systems

6. AUTHOR(S)

Anshuman Thakur

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

Coordinated Science Laboratory

University of Illinois

1308 W. Main St.

Urbana, IL 61801

9. SPONSORING/MONITORING AGENCYNAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681

DARPA/ITO

3701N. Fairfax Dr., Arlington, VA 22203-1714

NASA NAG-I-613

DABT63-94-C-O045

8. PERFORMING ORGANIZATION
REPORT NUMBER

(CRHC-97-15)
UILU-ENG-97-2222

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as

an official Department of the Army position, .policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This thesis presents a study of software failures spanning several different releases of Tandem's NonStop-UX operating

system running on Tandem Integrity S2(TMR) systems. NonStop-UX is based on UNIX System V and is fully compliant

with industry standards, such as the X/Open Portability Guide, the IEEE POSIX standards, and the System V Interface

Definition (SVID) extensions. In addition to providing a general UNIX interface to the hardware, the operating system has

built-in recovery mechanisms and audit routines that check the consistency of the kernel data structures. The analysis is

based on data on software failures and repairs collected from Tandem's product report (TPR) logs for a period exceeding

three years. A TPR log is created when a customer or an internal developer observes a failure in a Tandem Integrity system.

This study concentrates primarily on those TPRs that report a UNIX panic that subsequently crashes the system.

Approximately 200 of the TPRs fall into this category. Approximately 50% of the failures reported are from field systems,

and the rest are from the testing and development sites. It has been observed by Tandem developers that fewer cases are

encountered from the field than from the test centers. Thus, the data selection mechanism has introduced a slight skew.

4. SUBJECTTERMS

d_c88urement,

tion, dependability

fault analysis,

7. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

NSN 7540-01-280-5500

failure analysis, fault classifica-

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER IF PAGES

41

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescnbed byANSt Std.239-18

MEASUREMENT AND ANALYSIS OF FAILURES IN COMPUTER SYSTEMS

BY

ANSHUMAN THAKUR

B.S., University of Illinois at Chicago, 1994

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

in

ACKNOWLEDGMENTS

I would like to express my gratitude to my thesis advisor, Professor Ravi K. Iyer, for

his guidance and to our former group members, Dr. Inhwan Lee and Dr. Luke Young,

for their contributions to this work. In addition, I would like to thank all of my friends at

CRHC for answering my many questions and contributing ideas or discussion. Finally, I

would like to thank my parents for their support and encouragement.

iv

TABLE OF CONTENTS

°

.

3.

4.

°

.

INTRODUCTION

1.1 Related Work

THE SYSTEM ARCHITECTURE

2.1 The Integrity Architecture

DATA COLLECTION AND FORMAT

FAULT CLASSIFICATION

4.1 Broad Classification of the Failures

4.1.1 Types of failure

4.1.2 Final status of the failures

4.1.3 Importance of the core image

4.2 Detailed Fault Classification

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

Panic string classification

Detection location classification

Fault source location classification

Fault propagation

Programming mistake type classification

ANALYSIS OF TIME OF FAILURE AND REPAIRS

5.1 Up-time (Age) of the System at the Time of Failure

5.2 Failure Times

5.3 Repair Times

CONCLUSIONS

6.1 Summary

6.2 Future Work

Page

13

15

15

15

16

17

19

19

21

22

24

25

28

29

30

32

35

35

37

REFERENCES 38

V

LIST OF TABLES

Table
Page

1.1: Measurement-based studies of computer system dependability

4.1: Classification of failures using their panic strings

4.2: Classification of faults based on the location of the code that calls the panic
routine

4.3: Classification of failures based on faulty modules

4.4: Classification of faults on the basis of programming mistakes

3

20

22

23

26

vi

LIST OF FIGURES

Figure Page

1.1: Evolution of measurement-based studies of computer failure

2.1: Tandem Integrity $2 architecture

2.2: NonStop-UX operating system block diagram

3.1: An example of a TPR reported against NonStop-UX

4.1: Classification based on the nature of the failures for panics reported during the

measurement period

4.2: Status of errors reported against the OS during 1992-94, as of 1/1/95. . .

4.3: Importance of'the core image in the repair of faults

5.1: Software failure during measurement period starting 1992. Includes failures

reported by customers only

5.2: Age of the system at the time of crash

5.3: Time between duplicate failures and inter-arrival times of unique faults for cus-

tomer systems

5.4: Time to repair distribution for all cases and same faults

4

10

11

14

16

17

18

29

30

31

33

1. INTRODUCTION

UNIX-based systems are widely used both in industry and academia. A study of

failures in the UNIX operating system can enhance our understanding of software error

mani'...stations and aid in building'robust versions starting early in the software life

cycle. Studies such as in [38] and [20] have investigated OS failures, but no data have

been reported on failures in the UNIX operating system.

This thesis presents a study of software failures spanning several different releases of

Tandem's NonStop-UX operating system running on Tandem Integrity S2(TMR) sys-

tems. NonStop-UX is based on UNIX System V and is fully compliant with industry

standards, such as the X/Open Portability Guide, the IEEE POSIX standards, and the

System V Interface Definition (SVID) extensions. In addition to providing a general

UNIX interface to the hardware, the operating system has built-in recovery mechanisms

and audit routines that check the consistency of the kernel data structures.

Our analysis is based on data on software failures and repairs collected from Tandem's

product report (TPR) logs for a period exceeding three years. A TPR log is created when

a customeror an internal developerobservesa failure in a TandemIntegrity system. This

study concentratesprimarily on thoseTPRs that report a UNIX panic that subsequently

crashesthe system. Approximately 200 of the TPRs fall into this category. Approxi-

mately 50% of the failures reported are from field systems, and the rest are from the

testing and development sites. It has been observed by Tandem developers that fewer

cases are encountered from the field than from the test centers. Thus, our data selection

mechanism has introduced a slight skew.

In this thesis, a failure is said to occur if the system issues a panic message and

crashes. A panic is reported by the operating system when it fails to recover from a

reported error. A duplicate failure is defined as one failure that occurs due to the same

underlying faillt that was reported in an earlier failure.

Section 1.1 summ£rizes related research. Chapter 2 provides a description of the

system architecture and the operating system. Block diagrams of both the operating

system and the hardware are provided to assist the reader in associating the faults with

the modules. Chapter 3 provides details about the TPRs. An example of a TPR has

also been provided. Chapter 4 concentrates on classification of failures based on the

panic strings, the detection location of the error, the source location of the fault, and

the type of programming mistakes committed during development. Chapter 5 brings

into perspective the fault behavior of the software for the period extending from 1992

through 1994 and provides failure timing distributions, which include the distribution of

time between failures and the distribution of time taken to repair the fault. Chapter 6

3

Table 1.1: Measurement-basedstudies of computer systemde?endability
Category Issues Studies

Data Analysis of time-basedtuples [44], [8]
Coalescing Clustering basedon type and time [15], [19] [43]

Basic

Error

Characteristics

Dependency

Analysis

Modeling

and

Evaluation

Software

Dependability

Operational

Security

Fault

Diagnosis

Transient faults/errors

Error/failure bursts

TTE/TTF distributions

Fault window and impact of failures

Fault latency

Hardware failure/workload dependency

Software failure/workload dependency

Correlated failures and impact

Two-way and multiway failure dependency

Performability model for single machine

Model for distributed systems

Two-level models for operating systems

Error recovery

Hardware-related and correlated software errors

Software fault tolerance

Software fault tolerance using software diversity

Software defect classification

Experimental data from controlled experiment

and definition of security measures

Heuristic trend analysis

Statistical analysis of symptoms

Network fault signature

[36],[291,[15]
[151,[9],[431
[29],[14],[211
[5]
[3],[49],[30]
[11,[2],[121
[2],[14],[34]
[39],[48],[42]
[6],[191,[401
[lO]
[43], [11]

[21]
[471,[91
[13],[421,[21]
[7],[201,[22]
[28]
[37],[381, [4]
[26]

[44], [25]

[161

[311, [321, [331

concludes the thesis by summarizing the important results of this research and laying

out the plans for future work.

1.1 Related Work

Measurement and analysis of computer systems started in the late 1970s. Figure 1.1

traces the evolution of measurement-based studies. It associates measurement-based

research studies with five distinct time periods. Each period consists of five years. We

Before 1980

Early experiments investigating and measuring

hardware failures. Concentration on timing of failures.

Methodology for software fault tolerance devised, and

measurements to evaluate its effectiveness were conducted.

1980-1985 1

Dependency of hardware/software failures on the

workload of the system. Hardware-related software

errors.

/
!985- ! 990

Performability model of both software and hardware

developed to gain better understanding. Standard methods

used were Markov chains and Petri Nets. Study of

correlated faults in multicomputer systems.

1990-1995

Main concentration on software measurement.

Hardware became fairly reliable. Measurement

done on operating system, user-software, etc.

Measurement on network also performed.

/
1995 -

Hardware would again become a problem area with

fabrication technology heading towards 0.25 microns.

Measurement in multimedia systems and internet

application would gain relevance.

Figure 1.1: Evolution of measurement-based studies of computer failure.

can see from the figure that the nature of research work is migrating from hardware

to software. Researchers have put more stress on software failures in the recent years

because it has been found that software errors are responsible for 60-70% of system

failures. Table 1.1, adapted from [17], has been updated and provides classification of

major research work in the measurement area. Next, we will in detail discuss some of

the closely related work.

The issue of software reliability has been studied extensively, and a large number

of models have been proposed [27], [35]. For the most part, these models attempt to

describe the reliability growth of the software during the development phase.

Early measurement-based studies of operational software running on the IBM 3081

and DEC systems in [14] and [2] showed the strong correlation between the workload

of the system and the failures. The research in [2] introduced a workload-dependent

probabilistic model to predict the differences in manifestations of hardware transient and

software errors as a function of system workload. The model was applied to a modified

version of the standard TOPS-10 operating system running on a PDP-10 machine.

Analysis of failures of the VM/CMS and the MVS/SP operating system running on

the IBM 3081 machine [13], [14] found that 25% to 35% of all software failures were

hardware-related. Storage management and exceptions were identified to be the prime

cause of software errors.

A Markov model that describes software errors and the recovery process in a produc-

tion environment using error logs from the MVS operating system was discussed in [9].

The model developedusing low-levelerror data providesa quantification of the system

error characteristicsand the interaction betweendifferent types of errors. It was found

that multiple errors constituted 17% of all software errors and involved high-recovery

overhead.

Softwareerrors on the VAX/VMS operating system in VAX cluster multicomputer

environmentswereanalyzedusing error logs in [41]. The correlationsbetweensoftware

and hardwareerrors and amongsoftwareerrorson differentmachineswereinvestigated.

The results showedthat most softwareproblemswere from program flow control and

I/O management. It was concludedthat network-relatedsoftware was the reliability

bottleneck. The distribution of time betweenerrorswasmodeledby a two-phasehyper-

exponential random variable.

In [7], the resultsfrom a censusof Tandemsystemswerepresented.It wasfound that

the number of hardwarefailures has reducedconsiderablywith time, and the software

errorsaccount for 62%of the outages.

Softwaredefects in the MVS operating systemhavebeenstudied using the software

error reports in [38]. Three parameters,the error type, the defect type, and the error

trigger, have beenusedto classifyerrors reported from the DB2 and the IMS product.

It has been shown that the error characteristicsof different products were different.

A detailed discussionof the undefinedstate of software (when it fails) has also been

provided.

The use of the observedsoftwaredefects to provide feedbackto the development

processis discussedin [4]. Softwaredefectsare mappedback to the different phasesof

softwaredevelopment. A deviation from the standard defect pattern would indicate an

imperfect softwaredevelopmentprocedure.It hasbeenshownthat functional errors are

predominant in the early developmentalphase, whereastiming/synchronization errors

are morecommonduring the test phase.

In [5], a study of the impact of failures on customersand the fault lifetimes was

presentedusingfailure data from commercialsoftware.Two metrics, fault weight(which

is basedon the severityof the fault) and fault window (which is the time frame in which

the fault was reported), wereintroduced.

In [20] and [24], a study of the Tandem GUARDIAN operating system was pre-

sented. Data collectedby a system monitoring facility and the TPRs reported against

GUARDIAN wereusedto conduct the analysis. The failure times and the classification

of errors werepresented. The error propagation study conductedrevealedthat 47% of

the errors had a short error latency,whereas41%showedsignificant error latency. Most

of the errorswere detectedquickly without corrupting other segmentsof the code.

A wide-ranginganalysisusingerror classificationof softwareerror data collecteddur-

ing the developmentphasewas reported in [46]. This study hasimportant results. First,

it providescomprehensivedata on UNIX failures (although the UNIX systemconsidered

is significantly more robust/dependablethan a typical UNIX system). Second,it relates

the symptomsof the failuresto wherethe errorwasdetected(the panic invocation point),

the sourceof the error (the module to be fixed), and the panic string that wasgenerated

when the error wasdetected. It alsopresentsthe most prevalent kinds of programming

mistakesin the software. Third, it providesa comprehensivestudy of failure timing dis-

tributions. Finally, by combiningsystemsfrom the internal high-stressenvironmentand

systemsfrom the field sites, it providesa wide-rangingview of the system.

2. THE SYSTEM ARCHITECTURE

2.1 The Integrity Architecture

The NonStop-UX operating system runs on the Tandem Integrity $2 architecture.

Figure 2.1 provides a block diagram of the architecture. The system consists of a

triplicated processorlocal memory systemcontainedon three Central ProcessingUnits

(CPUs). DuplexedTriple Modular RedundantControllers (TMRCs) providea largesec-

ondary main memoryand serveasthe nexusfor the I/O operationsof the machine. This

is a major center for error detection, asall data transfersare checked.The TMRC also

doesthe voting in the architecture. The CPU/local memoryconnectsto the TMRCs over

the ReliableSystemBus (RSB). DuplexedInput/Output Packetizers(IOPs) provide the

interface betweena TMRC on one side and a supersetof an industry-standard I/O bus

(VME) on the other. The interconnectionbetweenthe IOPs and the TMRCs is called

the Reliable I/O Bus (RIOB). The IOPs are the conduit through which all I/O in the

machine flows. Each IOP controls a bus called the NonStop-V+ bus, which is the high

10

CPU A

Synchronization Control

I CPU B I CPU C

I I

lOP 0

MEM A]TMRC

RSBs

] RIOBs
1

MEM B]TMRC

ControlPanel
lOP 1

NonStop V+

Bus0

Mirrored Disks _

I

SCSI IController
i

SNA

ASYNC
Terminal Controllerl Printers

t SYNC IController

/ _ X.25

LAN _

Controllerl

NonStop V+

Bus !

Figure 2.1: Tandem Integrity $2 architecture.

11

HARDWARE

Kernel Tcxl _ald

L_cal Ken'¢l He;_

PaRe Tables

U_r Level

Pruce..,_ e$

Gh)bld Kernel

HEar)

Buffer Cache

User Level

Pneesses

Reserved fi)r

|'uturc use

', KERNEL

i) User prlce._s queue Core

' cxcc _ion /_ PANIC

_ PROCESS MANAGEMENT

i excel ,lil}n

I/O SUBSYSTEM Device]

® .u,.. j 0 ,o)'
I dMc: _' ¢'_le I [Disk Driver I { ASYNC PORTS/Device driv¢_ t

. _ _ !:::o:(i.Citlleg i,cRih.hin, 1..... ... _ _ _0

Figure 2.2: NonStop-UX operating system block diagram.

data integrity, version of the VME bus. To connect an ordinary VME controller to the

system, a Bus Interface Module (BIM) is connected to the VME controller, and the BIM

connects to the NonStop-V+. The BIM provides a dual-ported path from the peripheral

controller to each IOP. Peripherals are connected to the VME controllers via the Patch

Panel.

The reader is assumed to be familiar with UNIX System V; thus, we will only mention

some of NonStop-UX's unique features. Figure 2.2 provides a block diagram of the OS.

The local memory (present on the CPU board) contains the kernel text and data, a

local kernel heap, page tables, and user processes. A similar layout exists for the global

memory (physically present on the TMRCs). If data are not found in the local memory,

they are fetched from the global memory.

12

In addition to standard error-handling mechanismssuchas signals, techniquesare

usedto enhancethe robustnessof the OS.Thesetechniquesinclude a highly reliable en-

hancedkernel that correctsHigh Data-Integrity Panics (HDIPs) and usesaudit routines

for checkingthe consistencyof kerneldatastructures. Thousandsof assertionsthat check

for a viable condition, suchascorrect pointer values,havebeeninserted throughout the

OScode. Recoveryroutinesprovidemechanismsfor problem isolation and for preventing

system corruption by killing problematic processes.Facilities, suchas an indestructible

initialization (init) processand a keepalivedaemon,allow the systemto survive termina-

tion of vital operation processes.If a crucial processis terminated, thesefacilities restart

it. The data are protected from corruption by using disk checksums,providing strong

toleranceto power loss,and duplicating data acrossmultiple disks. Therearemanyother

hardware robustnessmechanismsthat support OS recovery.Most of thesemechanisms

are coveredin [18].

13

3. DATA COLLECTION AND FORMAT

A TandemProduct Report (TPR) logsthe occurrenceof a failure and tracks in detail

the problem diagnosisand repair. TPRs form the basisof our study. Typically, when a

failure occurs at a user'ssite or through extensivetesting during the developmentof a

release,it is subsequentlylogged,analyzed,and corrected,tn somecases,the symptoms

provide sufficient information to determinethe causeof the failure (generally in casesof

duplicates), in which casethe data are not enteredin the TPR database. If, however,

the developerconcludesthat further investigation is neededbeforea conclusioncan be

reached,then the failure is enteredinto the database.

Figure 3.1providesan exampleof a TPR reported for a failure in a NonStop-UX sys-

tem. The headersectionincludesthe dateandtime of the TPR creation,severity/priority

of the reported error, and the current status of the error. The secondsection provides

textual descriptions of the problem, the analysisproceduresundertakento correct the

fault, and the fix information. Although not shown in the example, someTPRs also

contain output from runs of crash on the memory core.

14

PRODUCT REPORT

Date Reported: xx-xx-xx

Severity level: A-C

Time of report: xx:xx Type of Problem:

HW/SW/Unknown

Customer information: Substatus of error: xx

Description of problem: Machine panic'ed with an assertion failure. (Assertion

XYZ checking pointer value P failed.) Before the machine panic'ed, the UNIX

command "ping" stopped working, all telnet sessions were hung, and the machine

complained that the ethernet driver buffer was full. Both the console messages and

the core are available.

Analysis procedures/results: The error was located in the ethernet driver, and the

driver was modified in the following way. Open requests are allowed to the

ethernet driver even if the controller is offline. This allows the streams pointer to

always be in a valid state. Earlier, if the device was offline, the open did not

succeed; however, the streams pointer was used subsequently.

-Analyst xxx (Dated: xx-xx-xx)

Fix incorporated in the affected module on xx-xx-xx by xxx.

Figure 3.1: An example of a TPR reported against NonStop-UX.

Two kinds of data were extracted from the TPRs for our study. The first relates to

the failure detection and repair process. These data include detailed information about

the analysis procedures undertaken at Tandem and the fix information, if the problem

was fixed. Analysis procedures illustrate the use of core image and console messages and

provide chronological listings of the procedures carried out to locate and fix the error.

The second kind of data consists of the times at which problems were reported and

at which they were fixed. In the case of duplicates, the fix time is the time at which it

was ascertained that the problem was a duplicate.

15

4. FAULT CLASSIFICATION

4.1 Broad Classificationof the Failures

4.1.1 Types of failure

Figure 4.1 providesa high-levelsummaryof the types of failures reported during the

three-year period. These failures fall into three categories. Sixty-three percent of the

failures were confirmed to be software related, and 4% of the failures were hardware

related. In 33% of the cases,the failure could not be classified;failures in this category

were generally problems that could not be fixed or problems in which changing both

hardware and softwarecomponentscorrectedthe problem. In the latter case,the cause

of the failure remainedunknown. In [24],of all the failures reported in the GUARDIAN

operating system,89% weresoftwarerelated, and the rest were due to hardware faults.

16

Unknown

(33°/°)

Hardware \

(4%)

i Total=389 i

Software

(63%)

Figure 4.1: Classification based on the nature of the failures for panics reported during the

measurement period.

4.1.2 Final status of the failures

Many of the failures reported were caused by the same fault as a failure reported

earlier. Figure 4.2 shows the breakdown of the final status of all of the failures reported

during the three-year period against various releases of the NonStop-UX operating sys-

tem. Forty-three percent of failures during this period were duplicates. This can be

compared with the 76°-/0 and 47% re-occurrence proportion reported in release 1 and re-

lease 2 of the software in [5], and 72% in [24]. Twenty-eight percent (in the category

Tested) were unique problems, which were fixed and passed through quality assurance.

In the absence of a core image and console messages, an effort was sometimes made to

recreate the problem. The core image and console messages were recorded if the problem

could be recreated. Eighteen percent of the failures, however, could not be recreated

on Tandem test machines. There are several explanations for this. 1) The system used

for testing may not have been the same as the system that failed (although all efforts

28%

17

2q_

18%

2_¼j

• Unable to reproduce
failure

[_ Question answered

• Duplicates

• Not a defect

• Tested (Unique

problem)

Missing information

Total = 180
i

A

Figure 4.2: Status of errors reported against the OS during 1992-94, as of 1/1/95.

are made to recreate the failure environment). 2) Stress conditions may not have been

the same. 3) Other software interactions with the OS at the time of failure may not

have been present. A reported failure is classified as "not a defect" when the fault is

due to user misunderstanding (e.g., when the user fails to follow the manual and installs

incompatible OS modules).

4.1.3 Importance of the core image

Of all of the failures, only 79% supplied the memory core image. In the other 21%,

a core image either was not created by the system when it failed, was lost during trans-

portation, or was rendered unreadable when it arrived at Tandem. Systems failed to

save a core image when there was insufficient disk space to store the core image or in a

few cases when double panics occurred. A double panic may occur, for example, when a

system encounters an inconsistency while trying to sync the filesystem inside the panic

routine. Nine percent of all failures reported in the OS were double panics.

18

Total = 180
7%(13)

13%(24)

68%(123)

1 I%(20)

• No core, fault not

fixed

' i ! No core, fault fixed

• Core available, fault

not fixed

• Core available fault

fixed

Figure 4.3: Importance of the core image in the repair of faults.

Availability of a core image is very important to the fault repair process. Using the

core image, the analyst can see the various operating system internal tables and the

memory structures. Generally, the procedure stack of the processes that were running at

the time of failure provides some clue about the location of the fault. Lee, Iyer, and Mehta

[23] discuss the use of a procedure stack in the identification and correction of software

failures. The file table, process table, and callout table also aid in fault identification

and location. Figure 4.3 shows the importance of the core image in the location and

correction of faults. We see that of the 143 failures containing core images, only 14%

(20 out of 143) could not be fixed, whereas of the other 37, for which no core image was

available, 35% (13 out of 37) of the errors could not be corrected. The critical importance

of the core image in the repair of a fault makes it clear that more effort must be made

to provide a better core-saving mechanism. Static allocation of disk space and regular

removal of old core images from that partition by the administrator can alleviate the

problem of failure to save the core image due to insufficient disk space. In the event of a

disk space shortage in a small system in which a large reserved partition on a disk would

19

not be feasible,a partial coreconsistingof the major internal tablesand the processstack

could be saved.

4.2 Detailed Fault Classification

In this section, we describe some fault classifications to provide more information

relating fault source location to the detection location. The classifications presented

also shed light on programming mistakes in the OS. In deciding on classes, our aim was

to abstract at a level that would facilitate the tabulation of failures, while preserving

relevant details.

The general system behavior during a failure can be characterized as the following

sequence of events. A system encounters an error situation, such as the failure of an

assertion, and then passes control to an error-handling routine if that assertion has an

associated error handler; otherwise, it panics. The error-handling routine determines

whether the reported error is recoverable. If the system cannot recover from the error, it

then calls the panic routine, which starts the panic process. The panic process attempts

to save the core image, displays a panic string on the console, and initiates an automatic

reboot.

4.2.1 Panic string classification

The panic string displayed on the console provides an error message describing the

last action that crashed the system and initiated the panic. Table 4.1 displays the failures

2O

Table 4.1: Classification of failures using their panic strings

Panic String Number Percent

Displayed of Failures of total

Total 86 (rounded off)

Assertion failed 32 37.2

Translation Lookaside

Buffer miss 12 14

Bus error 4 4.7

Recovery not allowed

Recovery threshold exceeded

Streams recovery
handler timed out

Kernel trap

Kernel memory freed

Kernel memory coalesced
Kernel stack overflow

11

3

2

2

1

3

12.8

3.5

2.3

2.3

2.3

1.2

3.5

Interrupt stack overflow 3 3.5

TMRC data transfer 3 3.5

Fatal TMRC error 1 1.2

Swap failed in user area 2 2.3

Page _ubstitution 1 1.2

Hardware specific memory

management problem 1 1.2

Unexpected write

I/O failure 2 2.3

Byzantine data in

writeprotect RAM 1 1.2

classified by the panic string. It should be noted that a panic string was not available for

all of the failures, and, thus, only a subset of the TPR data was used for the classification.

We see that about 40% of the panic strings displayed the message assertion fi_iled.

This directly suggests that assertions provide good error detection. A:_ertions test a

condition, such as the value of a pointer. If the value does not match the expected value,

the assertion transfers control to the recovery routine or calls a panic.

21

The next major contributor was the error message TLB miss in kernel space. This

occurs when the kernel references an address pointer that has no mapping in the TLB.

A wrong address for the kernel page is usually generated when a pointer data structure

in the kernel is corrupted.

The fourth row of Table 4.1 shows that in 15 cases the OS entered the recovery rou-

tines, and then, after several trials, the recovery routine declared the error unrecoverable

and invoked a panic. Other failures reported include kernel memory errors, errors during

transfer of data from the TMRC (global memory), some I/O errors, and one Byzantine

failure.

4.2.2 Detection location classification

Although the discussion so far suggests that many errors were detected by the asser-

tion tests, it does not reveal much about the propagation already incurred. Table 4.2

provides a classification based on the location of the code that called the panic routine.

Most of the errors were detected in the machine-dependent virtual memory module, in

which an assertion failed and the panic routine was called. A probable implication of

this is that these errors have incurred some propagation because the machine-dependent

code for virtual memory resides at a very low level. Many errors were also detected in

the streams module. These errors were due to software defects in the streams module

itself and to the propagation of device driver faults into the streams module when the

streams mechanism was used by device drivers for communication. The third row in

22

Table 4.2: Classification of faults based on the location of the code that calls the panic routine

Code section from which

invokes panic

Virtual memory management

Machine dependent virtual memory

and process management

Streams subsystem

File system operations

Asynchronous device driver

Related to dispatch queue. (process scheduling,

process preemption, context/process switching)

Sleep-wakeup hashing

V node operations

(read/write/release/open/create)

Transport Interface Library R/W Module

Routines for moving data around

(used by device drivers)

Remote procedure call section

Diagnostic/Integration section

(memory scrubbing/re-integration)

Error message logger

failuresTotal 92

8 2

23 2

14 2

7 5

10 3

3 1

2 1

4 5

1 3

1 3

1 5

4 4

14 4

Table 4.3 gives the number of defects encountered in the streams subsystem. Similar rea-

sons explain the phenomenon observed in the asynchronous device drivers, which have

a significantly high incidence of software defects. A number of panic calls were made

from the error message logger, which is responsible for passing messages to syslogd. In

all cases, it encountered a TLB miss and then panic'ed.

4.2.3 Fault source location classification

Table 4.3 shows the number of software defects identified in each module. We separate

the number of unique faults from the total number of failures to show the visibility of

23

Table 4.3: Classificationof failuresbasedon faulty modules

Moduleaffected No. of unique
failures

Devicedrivers(async,ethernet,etc.) 15
Memorysubsystem 8
Streamsmechanism 5
Processmanagement 3
MachinedependentVM code 4
Shutdown/Bootupprocess 4

Filesystem 6
I/O subsystemrelatedto data

movement 3
Mirror driver 1
Interrupt handling 1
Diagnostic/Integration 2
MIDAS(monitoringfacility) 1

Total 53

Total

31
16
12
6
8
8

10

Fig.2
map
3
2
3
1
2
not
shown
5

3 3
1 3
1 4
3 4
1 not

shown
100

each group of faults. If the proportion of duplicates ((total - unique)/total) is high, as

in the case of the device drivers and the memory subsystem, there is a direct implication

that faults in this area will affect many users and should be repaired immediately.

Table 4.3 also shows that the device drivers (which include disk, other async, and

ethernet drivers) contribute to the greatest number of faults. This result is mainly

because the system interacts with the outside world through these device drivers, and

many exceptions occur at this level. Many of the faults located in this region of the

code were missing checks for some exception. Some of the faults were also due to request

conflicts or to exceeding the limit of the number of opens in the device drivers.

24

Faults in the streams section of the code involved freeing a memory location or making

a pointer NULL and then trying to use it. In some cases, exception situations were not

checked.

Filesystem faults usually occur when the system is working under a high load or

in unrecommended situations, such as booting up the system with some disk removed.

Although the booting process is generally robust, unanticipated exceptions were en-

countered. Ten filesystem failures were reported during the period, of which four were

duplicates.

Faults in the page-swapping mechanism and faulty allocation and deallocation of

memory when forking a process are typical examples of memory subsystem faults. Eight

unique faults were reported in the memory subsystem.

The information in Table 4.3 can be used to direct major code correction efforts in

modules, such as the device drivers and in the memory subsystem, because not only are

these modules more likely to have faults, but also the faults in these regions have high

visibility (manifest into errors easily).

4.2.4 Fault propagation

Relating the classifications in Tables 4.2 and 4.3, we derive the propagation incurred

by the faults before they were detected. Although the number of TPRs providing infor-

mation for both the tables has been reduced slightly, we find that 62% of the errors were

25

detected in close proximity to the location where they were generated. By "close prox-

imity" we mean that the errors were detected in the code that performed similar actions

and that these faults were present in the same subsystem. The other 38% propagated

to unrelated code sections. Many of the errors caused by faults from the streams sub-

system were detected in the machine-dependent section when an assertion failed. These

problems generally occurred when a wrong address in a pointer subsequently interacted

with the memory. With 38% of the faults incurring some propagation before detection,

there is room for improved error containment. Building in fault tolerance with object-

oriented languages might reduce propagation. In addition to doing a check when a value

is used, a consistency check when a value is written into a structure would result in

instant detection. However, there is certainly an issue of the overhead involved.

4.2.5 Programming mistake type classification

Lastly, the type of programming mistakes committed during the development of the

OS was made the basis of classification. Table 4.4 provides the details of the classification.

In this table, we have left out the duplicates, because those do not provide any additional

information.

The first category relates to mistakes made in pointer data structure management.

"Missing check for an exception" means that an if statement to check an obvious check

condition was missing. The "incorrect logic" part groups all failures due to an incorrect

algorithm in the code or to wrong code placement. This class does not include cases in

26

Table 4.4: Classification of faults on the basis of programming mistakes

Cause Number of
Cases

Pointer made NULL and later used 9

Pointer assigned to wrong location 5

Stale pointer left from before 1

Missing check for an exception 14

Incorrect algorithm or code placement

(includes major algorithm mistakes) 14
Uninitialized data structures 2

Memory allocation/deaUocation 6

Unnecessary code left in the OS 2

Total 53

which trivial statements, such as exception checks or pointer tests, were over|ooked. A

mistake in which a wrong assumption about the timing was made and about where the

code is placed at a wrong location would _'all into this category. The "uninitialized data

structures" category is used to group failures in which a data structure is used before its

initialization. "Memory allocation/deallocation errors" constitutes the next group and

includes errors such as memory leaks or freeing memory at the wrong time. "Unnecessary

code" is the category that is not seen very often. This class means that some code (e.g.,

debug code) that was not required for proper functioning was left in the OS. A similar

classification has been used in [4]. Many of the errors involved pointers that either became

NULL before their use was over or were pointing to the wrong location. As is common

to all software, variables were sometimes uninitialized. At places, the semantics of the

code did not represent the intended algorithm.

27

Because many mistakes were due to mismanagement of pointer data structures, a

more robust methodology for program implementation should be followed. Research in

[45] suggests that using data structures, such as linked lists with backward pointers that

have inherent error detection and correction capabilities, might improve overall software

robustness. A feasibility study of robust data structures and their effect on software

performance would provide suggestions on their usability.

28

5. ANALYSIS OF TIME OF FAILURE AND REPAIRS

Time of failure and repair also portray failure characteristics. Figure 5.1 gives the

distribution of failuresencounteredon customersystemsduring the measurementperiod.

;[he x-axis starts at the beginning of the year 1992. Although the first version of" the

operating system was released in 1990, not much data are available for the period 1990-91.

This is partially because there were not many customers, and the data collection system

was unorganized. During the first six months there was not much activity. After 200

days, the failures reported increased as a major customer started testing the system and

contributed to the failure reporting. Discussions with developers at Tandem helped us

to identify the various factors that affect the failure reporting rate. Those factors _re:

1) an increase in the number of customers, 2) a diversification of the customer base

resulting in usage of the OS in many different ways, and 3) an increase in the number

of supported features (Tandem adds certain features to the OS for major customers).

Despite the involvement of the above factors, we see that the failure reporting frequency

29

3O

25

20

_ 15

_ 10

1993 1994

Number of days since Jan 1992

Figure 5.1: Software failure during measurement period starting 1992. Includes failures re-

ported by customers only.

has decreased, suggesting that the OS has matured considerably. During this period,

Tandem released more than 50 major and sub-releases of the operating system.

5.1 Up-time (Age) of the System at the Time of Failure

Up-time of a system is defined as the time elapsed since the last bootup of the system.

Sometimes this is also called the age of the system. Figure 5.2 shows the age distribution

of the customer systems at the time of failure. In many cases, when a new device is

installed, the kernel has to be recompiled with new parameters. Generally, the failures

reported with a small system age occur after this installation. The installation of new

devices, for example, uncovers faults in sections of code that were never executed before.

Incorrect setup of the newly installed devices can crash the system. In some cases, the

same fault crashed the system multiple times before a remedy could be supplied by

Tandem. The crash usually occurred because the user wanted to perform a specific task

3O

45

40

35

_, 30
25
20

15

10

5

25

2O

15

10

5
0

Expansion of the first bar

L

354 1062 1770 2478 3186 3894 4602 5310

Hours

Figure 5.2: Age of the system at the time of crash.

repeatedly and encountered the same errors in quick succession. This result corroborates

the findings in [2] and [41]; however, in our case, the up-time period was longer because

we have only looked _t major failures (panics).

5.2 Failure Times

In this section, we provide the distribution of the time between unique failures and

the duplicate failures for customer systems. The TPR creation time has been used to

approximate the failure time. The usage of TPR time as an approximation of failure time

introduces some uncertainty about the actual numbers obtained from the distribution.

It was observed that there was always a delay between the failure time and the failure

report time because of the delays at the customer's end and the standard delay in the

TPR entry procedure. For some cases in which information about the actual failure time

31

rL

12r

10

8

6

4

2

0

i Mean=85 i

Number of days

i
30.

i=

25

2O

t.*
g.h

10

5

0

!
Mean = 20 i

Number of days

(a) TBF of same faults (b) Inter-arrival of unique faults

Figure 5.3: Time between duplicate failures and inter-arrival times of unique faults for cus-

tomer systems.

was available, we compared the actual failure time to the TPR time, and an average

delay of 14 days was found. The variance was comparatively small.

Time between failures for all systems, although a useful parameter in cases in which

all systems are uniform, does not provide useful information in our case because systems

under consideration can be using different versions of the OS. It was observed that many

customers did not upgrade the OS for a long time, primarily because of the fear that

installing something new might have detrimental effects on their system's operation.

However, we provide two failure-time distributions that are useful in understanding

the behavior of the failures. Figure 5.3(a) provides the distribution of time between

failures due to the same fault. It was obtained by subtracting the failure time of each of

the duplicate faults from the failure time of its first reporting. Similar timing distribution

32

has been reported in [5]. Many faults having the same cause were reported in quick

succession. This may have been due to either of the two following reasons 1) a new

version of OS was supplied by Tandem simultaneously and, thus, failures are reported

around the same time, or 2) the same customer reported the same error more than once

before that problem was corrected. Duplicates have been reported sometimes after a very

long period (300+ days). Many customers waited a long time before up-grading to new

versions of the OS, and the rediscovery of an old fault was reported after a long time.

The mean time recorded between duplicate failures was 85 days.

Figure 5.3(b) gives the distribution of the inter-arrival times of the unique failures.

A failure that is not a duplicate of a fault reported earlier is called unique. The mean

time was 20 days.

5.3 Repair Times

When a system crashes, it generally comes up after a reboot if the crash was not due

to a software defect present in the bootup module. We do not define repair time as the

time to bring the system back into a running state, but as the difference between the time

of failure and the time at which the problem was identified and corrected. The problem

could either be a new problem or just a recurrence of a previously reported fault. In the

case of a fault that is a recurrence of a previously diagnosed fault, the repair time is the

time taken by the Tandem developers to ascertain that the fault was indeed a duplicate.

33

80r

70 : Mean=40],

6O

50

_ 40

_u 30

2O

10

Number of days

25

2O

15

_ 10

Number of days

(a) All faults (b) Duplicates

Figure 5.4: Time to repair distribution for all cases and same faults.

The calculation of the repair time was done by subtracting the time at which the

fault was entered from the time at which a final conclusion was drawn. We then add the

mean of the difference between the time of failure and the TPR time (which was 14 days)

to extend the period to the time of the crash. Figure 5.4(a) gives the distribution of the

time to repair all (testing/customer) failures. The mean time to repair was 40 days. This

time includes the delay in reporting the failures and the time taken by the customer to

send the details of the failure, such as console messages and memory core image. The

first bar in Figure 5.4(b) (with repair time of four days) consists of those cases in which a

problem was resolved even before the TPR was assigned to a developer. The longer times

resulted when there was a delay in seuding the information. It should be noted, however,

that in many cases a workaround or a temporary fix (not fully tested) is provided to the

customer very quickly (long before the case is closed). There were many cases in which

34

the core imagesent by the userwasunreadable,or it reflecteda different machinestate

(wrong core file). Repair time alsowent up when the problem could not be reproduced

in the test laboratory. In somecases,a fault thought to havebeenrepaired wasclosed,

and later, it wasdiscoveredthat the suggestedrepair did not eliminate the problem.

Usually the duplicate errorswererepairedin lesstime becauseboth the detectionand

the correction of the problem were easier. First, the duplicate failures generally show

similar symptoms to those in the previously reported cases[23]. Second,becausethe

fix is already available, the implementation time is eliminated. Most of the faults were

repaired within a month. Figure 5.4(b) givesthe distribution of the time to repair the

duplicates with a meanof 29 days. The duplicatesthat can be easily identified by the

first-or second-linesupport peopleare not documentedasthe TPRs. In thesecases,the

repair time is fairly short. Figure 5.4(b)doesnot showsuchduplicates.

35

6. CONCLUSIONS

6.1 Summary

With the widespreaduseof UNIX systemstoday, there is an urgent needto form a

clear understanding of its dependability." In this thesis,we have presentedan analysis

of failures in the variousreleasesof the NonStop-UX operating system,which is based

on UNIX SystemV. Initial classificationswerebasedon the nature (hardware/software)

and the current status of the failures. An in-depth fault classificationwasprovided. We

classifiedfaults basedon their sourcelocation, their detection location, the panic string

displayedon the console,and the kind of mistakesthat were madeby the developersof

the OS.We alsoprovidedistributions of the failure arrival rate and the inter-arrival times

of both duplicate and unique failures. Distributions of the time to repair all failures and

duplicates are alsoprovided.

It was found that 68°£of the panics reported were softwareproblems. Forty-three

percent of the softwarefailureswereduplicates.The devicedrivers contributed the most

36

to the numberof failures. Thesefailureswerealsoverycommonbecausemanycaseswere

reported. Failuresweremost commonlydetectedby triggers in the machine-levelvirtual

memorycodearea.Sixty-two percentof the errorsweredetectedvery nearto their source,

while the other 38%percentshowedsomepropagation. We alsosawthat the insertion of

thousandsof assertionsin the C)Simprovederror detection by detecting approximately

40% of all of the errors that displayed a panic string. Most of the failures were caused

by missing exception-checking statements. On many occasions, wrong pointer addresses

caused the failure. Using the above data, it can be concluded that there has been room

for improvement of the OS robustness, as 38% of the faults incurred propagation before

detection. Modules such as device drivers and the memory subsystem should be tested

rigorously because most faults were preserit in these modules, and the errors were visible.

Inter-arrival times between the unique failures and the time between the duplicate

faults were distributed with a mean of 20 and 85 days, respectively. The repair times

of all failures were distributed with a mean of 40 days. The repair of the duplicates

was faster (mean of 29 days) due mainly to fast identification of the faults using similar

symptoms and to the availability of a fix. The availability of a core image also facilitates

the repair process. It was observed that failures that recorded the core image had a

higher probability of getting fixed. A study of the age (up-time) of the system when it

failed showed that most of the system's ages were very low, suggesting that failures occur

more often after a system upgrade or occur in succession due to the same fault.

6.2 Future Work

37

This researchhas openeda door in the area of researchfor understanding failures

in the UNIX environment. Despite the universal useof UNIX-based systemsin both

industry and academia,not much researchhas beendoneon understanding the failure

mechanismand behavior of a UNIX-basedenvironment.

Continuing with the pursuit of developing a better understanding of failures in a

UNIX-basedsystem,a monitoring tool wasimplementedto collect failure logs from the

CRHC Sun network in January 1995.This tool, which is written in Perl, is responsible

for the collection of system logs from 64 SUN workstations in the CRHC (Center for

"Reliable and High Performance Computing) network. SunOS, which is based on the

BSD UNIX, logs all of the console messages in a file called messages in the var-adm

directory. Each week this message file is collected by the monitoring tool. At the end

of the measurement period, the tool collates all of the messages based on the machine

name and filters out the non-error messages.

Using the above tool, we monitored the CRHC network for eight months (January 95

to August 95). These data will be analyzed and classified in the near future. Preliminary

results show that classification of failures can be done based on the client/server and the

network. Because time information is also available, some timing distributions can also

be generated.

38

REFERENCES

[1]

[2]

[31

[4]

I5]

[6]

[7]

[8]

[9]

[lO]

[11]

S. E. Butner and R. K. Iyer, "A statistical study of reliability and system load at

SLAC," Proc. lOth Int. Syrup. Fault-Tolerant Computing, Oct. 1980, pp. 207-209.

X. Castillo and D. P. Siewiorek, "A comparable hardware/software reliability

model," Ph.D. dissertation, Carnegie-Mellon University, Pittsburgh, PA, 1981.

R. Chillarege and R. K. Iyer, "Fault latency in memory- an experimental study on

VAX 11/780," Proc. 16th Int. Syrup. Fault-Tolerant Computing, 1986, pp. 258-263.

R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K.

Ray, and M.-Y. Wong, "Orthogonal defect classification-a concept for in-process

measurement," IEEE Trans. Softw. Eng., vol. 18 no. 11, Nov. 1992, pp. 943-955.

R. Chillarege, S. Biyani, and J. Rosenthal, "Measurement of failure rate in widely

distributed software," Int. Syrup. Fault-Tolerant Computing, 1995, pp. 424-433.

J. B. Dugan, "Correlated hardware failures in redundant systems," Proc. IFIP Work-

ing Conf. Dependable Computing for Critical Applications, 1991.

J. Gray, "A census of Tandem system availability between 1985 and 1990," IEEE

Trans. Reliab., vol. 39, no. 4 Oct. 1990, pp. 409-418.

J. P. Hansen and D. P. Siewiorek, "Models of time coalescence in event-logs," Proc.

22nd Int. Syrup. Fault-Tolerant Computing, 1989, pp. 340-347.

M. C. Hsueh and R. K. Iyer, "A measurement-based model of software reliability

in a production environment," Proc. 11th Int. Computer Software _ Application

Conference, 1987, pp. 354-360.

M. C. Hsueh, R. K. Iyer, and K. S. Trivedi, "Performability modeling based on real

data: a case study," IEEE Trans. Comput., vol. 37, no. 4, Apr. 1988, pp. 478-484.

M. C. Hsueh, "Distributed multicomputer system availability based on measure-

ment: a case study," Proc. l Oth Int. Phoenix Conference on Computers and Com-

munications, 1991, pp. 78-84.

39

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

R .K. Iyer and D. J. Rossetti,"A statistical load dependency model for CPU errors

at SLAC,"Proc. 12th Int. Syrup. Fault-Tolerant Computing, 1982, pp. 363-372.

R. K. Iyer and P. Velardi, "Hardware-related software errors: measurement and

analysis," IEEE Trans. Softw. Eng., vol. SE-11, no. 2, Feb. 1985, pp. 223-231.

R. K. Iyer and D. J. Rossetti, "Effect of system workload on operating system

reliability: a study on IBM 3081," IEEE Trans. Softw. Eng., vol. SE-11, no. 12,

Dec. 1985, pp. 1438-1448.

R. K. Iyer, D. J. Rosetti, and M. C. Hsueh, "Measurement and modeling of computer

reliability as affected by system activity," ACM Trans. Comput. Syst., vol. 4, no. 3,

Aug. 1986, pp. 214-237.

R. K. Iyer, L. T. Young, and P. V. K. Iyer, "Automatic recognition of intermittent

failures: an experimental study of field data," IEEE Trans. Comput., vol. 39, no. 4,

Apr. 1990, pp. 525-537.

R. K. Iyer and D. Tang, "Experimental analysis of computer system dependability,"

University of Illinois, Urbana-Champaign, Teeh. Rep. UILU-ENG-93-2227, Sept.

1993.

D. Jewett, "Integrity $2: A Fault Tolerant UNIX Platform," Proc. Int. Syrup. Fault-

Tolerant Computing, 1991.

I. Lee, R. K. Iyer, and D. Tang, "Error/failure analysis using event logs from fault tol-

erant systems," Proc. 21st Int. Syrup. Fault-Tolerant Computing, June 1991, pp. 10-

17.

I. Lee and R. K. Iyer, "Analysis of software halts in the Tandem GUARDIAN

operating system," Proc. Int. Syrup. Software Reliability Engineering, 1992.

I. Lee, D. Tang, R. K. Iyer, and M. C. Hsueh, "Measurement-based evaluation of

operating system fault tolerance," IEEE Trans. Reliab., vol. 42, no. 2, Jun. 1993,

pp. 238-249.

I. Lee and R. K. Iyer, "Faults, symptoms, and software fault tolerance in Tandem

GUARDIAN90 operating system," Proc. 23rd Int. Syrup. Fault- Tolerant Computing,

1993, pp. 20-29.

I. Lee, R. K. Iyer, and Abhay Mehta, "Identifying software problems using symp-

toms," Proc. 2_th Int. Syrup. Fault-Tolerant Computing, 1994, pp. 320-329.

I. Lee and R. K. Iyer, "Software Dependability in the Tandem GUARDIAN System,"

IEEE Trans. on Softw. Eng., May 1995.

4O

[25]

[26]

[27]

[28]

[29]

[3o]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

T. T. Lin, and D. P. Siewiorek, "Error log analysis: statistical modeling and heuristic

trend analysis," IEEE Trans. Reliab., vol. 39, no. 4, Oct. 1990, pp. 419-432.

B. Littlewood, S. Brocklehurst, T. Olovsson, and E. Jonsson, "On measurement of

operational security," IEEE Aerosp. Electron. Syst. Mag., vol. 9, no. 10, Oct. 1994,

pp. 7-16.

B. Littlewood, "Theories of software reliability: how good are they and how (:an

they be improved?" IEEE Trans. Softw. Eng., vol. SE-6, no. 5, Sept. 1980.

M. R. Lyu, J. H. Chen, and A. Avizienis, "Software diversity metrics and measure-

ments," Proc. 16th Int. Computer Software and Applications Conference, Sept. 1992,

pp. 69-78.

S. R. McConnel, D. P. Siewiorek, and M. M. Tsao, "The measurement and analysis

of transient errors in Digital computer system," Proc. 9th Int. Syrup. Fault- Tolerant

Computing, 1979, pp. 67-70.

J. G. McGough and F. L. Swern, "Measurement of fault latency in a digital avionic

mini processor," NASA Contractor Rep.Tech. Rep. 3651, Jan 1983.

R. A. Maxion, "Anomaly .detection for diagnosis," Proc. 20th Int. Syrup. Fault-

Tolerant Computing, Jun. 1990, pp. 20-27,

R. A. Maxion and F. E. Feather, "A case study of ethernet anomalies in a distributed

computing environment," IEEE Trans. Reliab., vol. 39, no. 4, Oct. 1990, pp. 433-443.

R. A. Maxion and R. T. Olszewski, "Detection and discrimination of injected net-

work faults," Proc. 23rd Int. Syrup. Fault-Tolerant Computing, 1993, pp. 198-207.

S. Mourad and D. Andrews, "On the reliability of the IBM MVS/XA operating

system," IEEE Trans. Softw. Eng., vol. SE-13, no. 10, Oct. 1987, pp. 1135-1139.

J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability, New York, NY:

McGraw-Hill, 1990.

D. P. Siewiorek, V. Kini, H. Mashburn, S. R. McConnel, and M. Tsao, "A case study

of C.mmp, Cm, and C.vmp: part I: experience with fault tolerance in multiprocessor

systems," Proc. IEEE, vol. 66, no. 10, Oct. 1978, pp. 1178-1199.

M. Sullivan and R. Chillarege, "Software defects and their impact on system avail-

ability - a study of field failures in operating systems," Proc. 21st Int. Symp. Fault-

Tolerant Computing, June 1991.

M. Sullivan and R. Chillarege, "A comparison of software defects in database man-

agement systems and operating systems," Int. Syrup. Fault-Tolerant Computing,

1992, pp. 475-484.

41

[39]

[4o]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

D. Tang, R. K. Iyer, and Sujatha Subramani, "Failure analysis and modeling of a

VAXcluster system," Proc. Int. Syrup. Fault-Tolerant Computing, 1990, pp. 244-251.

D. Tang and R. K. Iyer, "Impact of correlated failures on dependability in a VAX-

cluster system," Proc. 2nd IFIP Working Conf. Dependable Computing for Critical

Applications, 1991.

D. Tang and R. K. Iyer, "Analysis of the VAX/VMS error logs in multicomputer

environment environments - a case study of software dependability," Int. Syrup.

Software Reliability Engineering, 1992, pp. 216-226.

D. Tang and R. K. Iyer, "Analysis and modeling of correlated failures in multicom-

purer systems," IEEE Trans. Comput., vol. 41, no. 5, May 1992, pp. 567-577.

D. Tang and R. K. Iyer, "Dependability measurement and modeling of a multicom-

puter systems," IEEE Trans. Comput., vol. 42, no. 1, May 1992, pp. 62-75.

M. M. Tsao and D. P. Siewiorek, "Trend analysis on system error files," Proc. 13th

Int. Syrup. Fault-Tolerant Computing, 1983. pp. 116-119.

D. J. Taylor, D. E. Morgan, and J. Black, "Redundancy in data structures: improv-

ing software fault tolerance," IEEE Trans. Softw. Eng., vol. SE-6, no. 6, Nov. 1980,

pp. 585-594.

T. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability, New York: Elsevier

North-Holland, 1978.

P. Velardi and R. K. Iyer, "A study of software failures and recovery in the MVS

operating system," IEEE Trans. Comput., vol. C-33, no. 6, Jun. 1984, pp. 564-568.

A. S. Wein and A. Sathaye, "Validating complex computer system availability mod-

els," IEEE Trans. Reliab., vol. 39, no. 4, Oct. 1990, pp. 468-479.

M. H. Woodbury and K. G. Shin, "Measurement and analysis of workload effects

on fault latency in real-time systems," IEEE Trans. Softw. Eng., vol. 16, no. 2, Feb.

1990, pp. 212-216.

